博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
为什么ConcurrentHashMap是弱一致的(jdk6)
阅读量:6405 次
发布时间:2019-06-23

本文共 5787 字,大约阅读时间需要 19 分钟。

本文将用到Java内存模型的happens-before偏序关系(下文将简称为hb)以及ConcurrentHashMap的底层模型相关的知识。本文将从ConcurrentHashMap的get,clear,iterator(entrySet、keySet、values方法)三个方法来分析它们的弱一致问题。

ConcurrentHashMap#get

get方法是弱一致的,是什么含义?可能你期望往ConcurrentHashMap底层数据结构中加入一个元素后,立马能对get可见,但ConcurrentHashMap并不能如你所愿。换句话说,put操作将一个元素加入到底层数据结构后,get可能在某段时间内还看不到这个元素,若不考虑内存模型,单从代码逻辑上来看,却是应该可以看得到的。

下面将结合代码和java内存模型相关内容来分析下put/get方法(本文中所有ConcurrentHashMap相关的代码均来自hotspot1.6.0_18)。put方法我们只需关注Segment#put,get方法只需关注Segment#get,在继续之前,先要说明一下Segment里有两个volatile变量:counttable;HashEntry里有一个volatile变量:value

Segment#put

V put(K key, int hash, V value, boolean onlyIfAbsent) {    lock();    try {        int c = count;        if (c++ > threshold) // ensure capacity            rehash();        HashEntry
[] tab = table; int index = hash & (tab.length - 1); HashEntry
first = tab[index]; HashEntry
e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue; if (e != null) { oldValue = e.value; if (!onlyIfAbsent) e.value = value; } else { oldValue = null; ++modCount; tab[index] = new HashEntry
(key, hash, first, value); count = c; // write-volatile } return oldValue; } finally { unlock(); }}

Segment#get

V get(Object key, int hash) {    if (count != 0) { // read-volatile        HashEntry
e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) { V v = e.value; if (v != null) return v; return readValueUnderLock(e); // recheck } e = e.next; } } return null;}

我们如何确定线程1放入某个变量的值是否对线程2可见?文章开头提到的JLS链接中有说到,当a hb c时,a对c可见,那么我们接下来我们只要寻找put和get之间所有可能的执行轨迹上的hb关系。要找出hb关系,我们需要先找出与hb相关的Action。为方便,这里将两段代码放到了一张图片上。

可以注意到,同一个Segment实例中的put操作是加了锁的,而对应的get却没有。根据hb关系中的线程间Action类别,可以从上图中找出这些Action,主要是volatile读写和加解锁,也就是图中画了横线的那些。

put操作可以分为两种情况,一是key已经存在,修改对应的value;二是key不存在,将一个新的Entry加入底层数据结构。

key已经存在的情况比较简单,即if (e != null)部分,前面已经说过HashEntry的value是个volatile变量,当线程1给value赋值后,会立马对执行get的线程2可见,而不用等到put方法结束。

key不存在的情况稍微复杂一些,新加一个Entry的逻辑在else中。那么将new HashEntry赋值给tab[index]是否能立刻对执行get的线程可见呢?我们只需分析写tab[index]与读取tab[index]之间是否有hb关系即可。

假设执行put的线程与执行get的线程的轨迹是这样的

执行put的线程 执行get的线程
⑧tab[index] = new HashEntry\<K,V>(key, hash, first, value)  
②count = c  
  ③if (count != 0)
  ⑨HashEntry e = getFirst(hash);

tab变量是一个普通的变量,虽然给它赋值的是volatile的table。另外,虽然引用类型(数组类型)的变量table是volatile的,但table中的元素不是volatile的,因此⑧只是一个普通的写操作;count变量是volatile的,因此②是一个volatile写;③很显然是一个volatile读;⑨中getFirst方法中读取了table,因此包含一个volatile读。

根据Synchronization Order,对同一个volatile变量,有volatile写 hb volatile读。在这个执行轨迹中,时间上②在③之前发生,且②是写count,③是读count,都是针对同一个volatile变量count,因此有② hb ③;又因为⑧和②是同一个线程中的,③和⑨是同一个线程中的,根据Program Order,有⑧ hb ②,③ hb ⑨。目前我们有了三组关系了⑧ hb ②,② hb ③,③ hb ⑨,再根据hb关系是可传递的(即若有x hb y且y hb z,可得出x hb z),可以得出⑧ hb ⑨。因此,如果按照上述执行轨迹,⑧中写入的数组元素对⑨中的读取操作是可见的。

再考虑这样一个执行轨迹:

|执行put的线程|执行get的线程|

|-|-|
|⑧tab[index] = new HashEntry\<K,V>(key, hash, first, value)||
||③if (count != 0)|
②count = c||
||⑨HashEntry e = getFirst(hash);|

这里只是变换了下执行顺序。每条语句的volatile读写含义同上,但它们之间的hb关系却改变了。Program Order是我们一直拥有的,即我们有⑧ hb ②,③ hb ⑨。但这次对volatile的count的读时间上发生在对count的写之前,我们无法得出② hb ⑨这层关系了。因此,通过count变量,在这个轨迹上是无法得出⑧ hb ⑨的。那么,存不存在其它可替换关系,让我们仍能得出⑧ hb ⑨呢?

我们要找的是,在⑧之后有一条语句或指令x,在⑨之前有一条语句或指令y,存在x hb y。这样我们可以有⑧ hb x,x hb y, y hb ⑨。就让我们来找一下是否存在这样的x和y。图中的⑤、⑥、⑦、①存在volatile读写,但是它们在⑧之前,因此对确立⑧ hb ⑨这个关系没有用处;同理,④在⑨之后,我们要找的是⑨之前的,因此也对这个问题无益。前面已经分析过了②,③之间没法确立hb关系。

在⑧之后,我们发现一个unlock操作,如果能在⑨之前找到一个lock操作,那么我们要找的x就是unlock,要找的y就是lock,因为Synchronization Order中有unlock hb lock的关系。但是,很不幸运,⑨之前没有lock操作。因此,对于这样的轨迹,是没有⑧ hb ⑨关系的,也就是说,如果某个Segment实例中的put将一个Entry加入到了table中,在未执行count赋值操作之前有另一个线程执行了同一个Segment实例中的get,来获取这个刚加入的Entry中的value,那么是有可能取不到的!

此外,如果getFirst(hash)先执行,tab[index] = new HashEntry\<K,V>(key, hash, first, value)后执行,那么,这个get操作也是看不到put的结果的。

正是因为get操作几乎所有时候都是一个无锁操作(get中有一个readValueUnderLock调用,不过这句执行到的几率极小),使得同一个Segment实例上的put和get可以同时进行,这就是get操作是弱一致的根本原因。Java API中对此有一句简单的描述:

Retrievals reflect the results of the most recently completed

update operations holding upon their onset.

也就是说API上保证get操作一定能看到已完成的put操作。已完成的put操作肯定在get读取count之前对count做了写入操作。因此,也就是我们第一个轨迹分析的情况。总之,get有可能读到过时的数据。

ConcurrentHashMap#clear

clear方法很简单,看下代码即知。

public void clear() {    for (int i = 0; i < segments.length; ++i)        segments[i].clear();}

因为没有全局的锁,在清除完一个segments之后,正在清理下一个segments的时候,已经清理segments可能又被加入了数据,因此clear返回的时候,ConcurrentHashMap中是可能存在数据的。因此,clear方法是弱一致的。

ConcurrentHashMap中的迭代器

ConcurrentHashMap中的迭代器主要包括entrySet、keySet、values方法。它们大同小异,这里选择entrySet解释。当我们调用entrySet返回值的iterator方法时,返回的是EntryIterator,在EntryIterator上调用next方法时,最终实际调用到了HashIterator.advance()方法,看下这个方法:

final void advance() {    if (nextEntry != null && (nextEntry = nextEntry.next) != null)        return;    while (nextTableIndex >= 0) {        if ( (nextEntry = currentTable[nextTableIndex--]) != null)            return;    }    while (nextSegmentIndex >= 0) {        Segment
seg = segments[nextSegmentIndex--]; if (seg.count != 0) { currentTable = seg.table; for (int j = currentTable.length - 1; j >= 0; --j) { if ( (nextEntry = currentTable[j]) != null) { nextTableIndex = j - 1; return; } } } }}

这个方法在遍历底层数组。在遍历过程中,如果已经遍历的数组上的内容变化了,迭代器不会抛出ConcurrentModificationException异常。如果未遍历的数组上的内容发生了变化,则有可能反映到迭代过程中。这就是ConcurrentHashMap迭代器弱一致的表现。

总结

ConcurrentHashMap的弱一致性主要是为了提升效率,是一致性与效率之间的一种权衡。要成为强一致性,就得到处使用锁,甚至是全局锁,这就与Hashtable和同步的HashMap一样了。

原文链接:[http://wely.iteye.com/blog/2360253]

转载地址:http://qpiea.baihongyu.com/

你可能感兴趣的文章
JavaScript:函数防抖与函数节流
查看>>
关于区间贪心的补全
查看>>
架构设计步骤
查看>>
自定义元素探秘及构建可复用组件最佳实践
查看>>
区块链是一个公共数据库,要放在一个块内
查看>>
Jenkins 用户文档(目录)
查看>>
系统常见指标
查看>>
使用crond构建linux定时任务及日志查看
查看>>
地图绘制初探——基于maptalks的2.5D地图绘制
查看>>
SpringBoot2.0之七 实现页面和后台代码的热部署
查看>>
Git 仓库大扫除
查看>>
设计模式-单例模式
查看>>
es6基础0x014:WeakMap
查看>>
九种 “姿势” 让你彻底解决跨域问题
查看>>
php中mysqli 处理查询结果集总结
查看>>
你不知道的JavaScript运算符
查看>>
小程序开发注意事项
查看>>
ECMAScript7规范中的instanceof操作符
查看>>
Hadoop HDFS原理分析
查看>>
【webpack4】基本配置和入门api
查看>>